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We show that the Sal’nikov thermokinetic oscillator system has at least two limit cycles,
an unstable one lying inside a stable one. The proof uses the elementary technique of Liénard’s
equation.

1. Introduction

In this paper we deal with the Sal’nikov thermokinetic oscillator system

dx y
E{““'KXCXP<TT5>’

%thmy—}—xexp(Tjj—&)—), (1.1)
and give some sufficient conditions on u, K, £ under which the system (1.1) has at
least two limit cycles. This was first proved by Gray and Roberts [2] and Kay and
Scott [4], then by Forbes [1]. All proofs involve the use of Hopf bifurcation and
numerical methods, and the stability of the limit cycles is determined by means of
Floquet theory.

Here we want to give a new proof. For this we transform (1.1) into a Liénard
equation, and we use a result obtained by Zhang Zhifen [5].

2. Two limit cycles

Clearly, the system (1.1) has only a unique equilibrium point M(x, ), where
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I y
x =yexp| — ——1,
Y ( T+ @‘z)
Let K, K; be constantand K; >y, K, >y + K /K.
Define
1
A= {(x,y)|0<x<K1,O< Ex+y<K2} .
It is not difficult to prove the following.

LEMMA1
The area A s a positive invariant set for system (1.1) in R?.

In order to prove that system (1.1) has at least two limit cycles, let us consider:

PROPOSITION 1
The planar differential system (1.1) can be transformed into the following equa-
tion of Liénard type:

dx

- Vy_F

3 =7~ FH),

dy

3, = 4, (1.2)
by a change of variables.
Proof

First, we translate the equilibrium point M (X, ») to the origin by setting
X=x-X, Y=y-—y.

System (1.1) transforms into

dx Y+5y

d —
Now let

Z=—(Y+Yy) +(X+)’c)exp[-l—_*_§(+z_y)} :

Then (1.3) becomes



H.N. Moreira, W. Yuquan/ The Sal’nikov equation

dY

ikt
dZ
i —Wy(Y) - (Y)Z — 0, (Y)Z?,

where

Uo(Y) = KY exp {—1—%&%}—)} ,

Y+ Y+
[t +€(Y+?)]2+KCXP[1 +§(Y+J7)] !

1
L+E&Y+yF
Introducing the new time transformation

dr _ —(Y +7)
e (YY) = wap{m} ;

U (Y)=1-

Uy(Y) =—

where

y
Co =exp| —— |,
0T (1 ¥ @)
we obtain the Liénard equation

d’y dy

Ez‘*‘f(Y)E“HI(Y) =0,

where

f(Y) =0 (Y)$(Y),
q(Y) = 02(Y)$*(Y),

or rather the equivalent system (1.2), with

F(x) = /0 Nors

PROPOSITION 2

65

(1.4)

(1.5)

(1.6)

[1] The Sal’'nikov thermokinetic oscillator problem defined in equations (1.1)

has no periodic solutions when ¢ >, forall pand K.

Proof
The divergence of the vector field defined by (1.2)
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0 0,
V=gl = FO) + 5 (g,
LSRRI EaC DV Ca) R ) P
[1+¢&(x+ %) ’
is negative, since the discriminant of
pu) =4 + (26— Nu+1
is negative for £ >1and ¢(x) >0.
Hence by Bendixson’s negative criterion [3] there is no periodic orbit in (1.2) or
equivalently (1.1).
Now, as { <1, there exists two roots for the equation
Ex+32-1)(x+5)+1=0.

Let x;, x; represent the two roots; then we have

xi1=x-y, x=kh-y,
where 0 <x; <X,,and

iizl—ZE%:\/l——_éiZ‘

282 ’

Define

2 ={0<¢<t and % <y<iy),
Er-—x)x—x) [ —(x+7) }

[1+€(x+7) 1 +E(x+7)

Obviously, I1(x)>0as x € (—o0, x1) U (x3, +00), and IT(x) <Oas x e (x1, x3).
By (1.2),(1.4)and (1.6), we have

Fx) :/Oxf(x)dxz /0 ColIT(x) + K] dx. (1.7)

i=1,2.

II(x) =

LEMMA?2

[5] Consider the system (1.2), and let hypotheses
Al. ¢,f e CO(|x| < + o),
A2. xq(x)>0,x # 0,
hold. Then the positive half trajectory and negative half trajectory passing the
point A(x, F(x))(x # 0) must intersect the y-axis or tend toward the origin for sys-
tem (1.2).

LEMMA?3
[5] Consider the system (1.2), and let hypotheses
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Bl. f,qe C%(|x| < + o0),
B2. xq(x)>0,x #0,
B3. either

lim F(x) = 400,

x—++o00

lim F(x)=-oo0,

X —00

or
+
|| 4t dx = 0oo) = +oo,

F(x)>K;, x>0,
F(x)<K;, x<0,

hold. Then the positive half trajectory passing the point P(0, y,)(y, # 0) mustinter-
sectthe curve y = F(x) for system (1.2).
We obtain the following result.

THEOREM 1

Consider the system of equations (1.2). If £ (2, K> 1, and there exists a con-
stant M > max {|x;],x,},e; <ej, such that F(x)>e; as x>M and F(x)<e, as
x< — M, then system (1.2) has at least one stable limit cycle and one unstable limit
cyclein thearea A.

Proof
By (1.7)
f(x) = Cofm(x) + K].
Choose K >1(i.e. 1/K < 1), then we have
f(x)>0 (1.8)

asxe(xy,xz).
Define the energy function

Awy) = [ ) s+ b2,
Then, for system (1.2), we have

D = gty = g ()

:-KCOxexp[— X1y J/oxf(x)dx<0 (1.9)

1+&(x+7)
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Fig. 1. Illustrating the proof of theorem 1.

asxe(x, x;). Hence

%é<o, 0<|x|<1. (1.10)

So, the equilibrium point O(0,0) is stable, and the closed curve L; : A(x, y)
= C(0<C<1)isregarded as an interior boundary curve for system (1.2).
Now we will construct an exterior boundary curve for system (1.2).
Define
e = max |F(X)|, b= max |g(x)|.

Ix|<M Ix|<M

Asd>1(i.e.,1/d<1),wehaveforsystem(1.2)

E:y—F(x)>a:d—e>O,
dr



H.N. Moreira, W. Yuquan / The Sal'nikov equation 69

as|x|<M,y>d,and

‘ ‘ —q(x)

<= Sl, .
TF (1.11)

(Ix| < M).

Choosc a point Po(xp,, yp,) on the line x = —M such that yp, >2d. Then b/a<1
as d > 1. Thus the positive half trajectory I't (Py) passing the point Py must inter-
sect the y-axis at P; and intersect the line x = M at P,(xp,, yp,). We have along
the path Py P Py:

ViR >d,  |yp —ypl<1. (1.12)

By lemma 2, I'" (Py) will intersect the curve y = F(x) at P3. By lemma 3, I"* (Py)
willintersect the line x = M at P4(xp,, yp,) again.

Now we choose a point Si(xs,ys,) on the line x=M such that
ys, < min(—2d, yp,). Similarly, the positive half trajectory I"* (S} ) passing the point
S; will intersect the y-axis at S; and intersect the line x = —M at S;. Along the
curve 515,53, we have

y5iss < —d,|ys, — ys|<1, (1.13)

asd>1.

On the line x = —M, we choose a point Qy(xg,,yg,) such that Yg > Yp,. Simi-
larly, the negative half trajectory I'"(Qp) passing the point Oy will intersect the
curve y = F(x) at Q; and intersect the line x = —M at Q,, the negative y-axis at Qs,
and intersect the line x = M at Q4(xg,,v0,)-

If yo, 2 yp,, then we define the closed curve

— a————— e ——— JR—
Ly = P4P3Py U PyQo U Q00104 U Q4 Py,
and the exterior boundary curve L, for system (1.2) is made by L,. So a ring
domain {2is made by the curve L; and L; for system (1.2). By the Poincaré~Bendix-
sons theorem [3], system (1.2) or (1.1) has at least an unstable limit I" in 2. By
lemma 1, wehave I" = A.
We note that, for system (1.2), we have on the line Py Qy:

dx

P —~q(—M)>0, (1.14)
and on the line Q4 P4:

dx

—(1—7:=—q(M)<0. (1.15)

If yg, <yep,, then we choose a point Ro(xg,, Yx,) on the line x = M such that
YR, < min {Qs, S1, —3d} .

The negative half trajectory I'” (Ry) passing the point Ry will intersect the curve
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y = F(x) at Ry, and also the line x = M at R, and the positive y-axis at Rz, and
also theline x = —M at Ry(xg,, ¥r,),asd > 1.
If yr, <y, then define the closed curve

L, = RoRiRy URsQo U Q00104 U Q4Ry .

Paying attention to (1.14) and (1.15), we know that the ring domain 12 is made by
two closed curves L; and L, for system (1.2). By the Poincaré-Bendixsons theorem
[3], system (1.2) or (1.1) has at least an unstable limit cycle Tin Q andT < A by
lemma 1.

If yr,>yg,, then I'"(Rp) will intersect the curve y = F(x) at Rs, and also the
line x = — M at Rg, the negative y-axis at Ry and the line x = M at Rg.

If yr, = ys,, then yg, > yr,. Define

= D e, S
Ly = RgR3R1Rg U RgRy .

Similarly, the ring domainis made by L; and ;iz for system (1.2).
If Yg, < Ys,, then we define the energy function

K0y) =40 - K+ [ gbax.
Along the path RoRy R4 R Rg we have

dX _gx)x+ (- K)y
dy ¥ ’
= F(x) - K1 .

So,

Sa—dn = [FO) - Ky = [ ™K - F(x)]dy

YRy YR
> (Ki — K2) (YR — YRe) >0 (1.16)
~ _ YRy
AR, — ARy = [F(x) — K] dx>0;
Vag

dX _ g(x)[Ki — F(x)]

Weknowthatasd>1, wehave
%lsl, Ix[<M. (1.18)

So,asd>1, |x| <M, we obtain
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| Xk — Ar| = /X jka q(x)y[If‘ ;(f)(x)]dx <1; (1.19)

6

dx|<1. (1.20)

Az — Ars| = / T g(x)[Ki — F(x)]
Xg, y—F(x)
By (1.16)—(1.20), we obtain
ARy — ARy = (AR, — Ar) + (Org — Ary) + (Ary — Ary) + (A, — AR,)
> (K1 — K2) (YR, = YRs) = | ARy = ARe| = [ ARy = Ag,|
>1(Ky — K3)(Yr, — Yre) >0. (1.21)
By (1.21), wehave

YR > YRy (1.22)

asd>1.
Define

Ly, = RyRyR4R¢Rg U Ry Ry .

By considering (1.15), we know that the ring domain 2, is made by the curve L;
and L,. Using the Poincaré-Bendixson theorem [3], system (1.2) or (1.1) has at least
anunstable limit cycle I'y in £2,. Lemma 1 shows that the limit cycle I'} = A.

Lastly, the I'; is regarded as a interior boundary curve and the closed curve
9(A) (i.e.: the boundary of the area A) is regarded as a exterior boundary curve.
Then the ring domain 2, is made by I') and §(A).

By the Poincaré—Bendixson theorem again, system (1.2) or (1.1) has at least a
stable limitcycle I'; in the area {2,.

Therefore, system (1.2) or (1.1) has at least two limit cycles in the area A and
the proofis completed.

Remark 1

Via Hopf bifurcation theory, there are regions of parameter space where the
Sal’nikov thermokinetic oscillator (1.1) exhibits one stable limit cycle [2]. In
another point of view, the uniqueness of limit cycles of the system (1.1) follows
from an application of the Zhang Zhifen theorem [6] to Liénard’s system (1.2).
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