Sufficient conditions for the Sal'nikov equation to have at least two limit cycles

Helmar Nunes Moreira ${ }^{a}$ and Wang Yuquan ${ }^{b}$
${ }^{a}$ Universidade de Brasilia-UnB, Instituto de Ciências Exatas, Departamento de Matemática, 70919 Brasilia, DF, Brazil
${ }^{b}$ Department of Mathematics, Huaihua Teacher's College, Huaihua, Hunan, Peoples Republic of China

Received 11 June 1992; revised 19 March 1993

Abstract

We show that the Sal'nikov thermokinetic oscillator system has at least two limit cycles, an unstable one lying inside a stable one. The proof uses the elementary technique of Liénard's equation.

1. Introduction

In this paper we deal with the Sal'nikov thermokinetic oscillator system

$$
\begin{align*}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=\mu-K x \exp \left(\frac{y}{1+\xi y}\right), \\
& \frac{\mathrm{d} y}{\mathrm{~d} t}=-y+x \exp \left(\frac{y}{1+\xi y}\right), \tag{1.1}
\end{align*}
$$

and give some sufficient conditions on μ, K, ξ under which the system (1.1) has at least two limit cycles. This was first proved by Gray and Roberts [2] and Kay and Scott [4], then by Forbes [1]. All proofs involve the use of Hopf bifurcation and numerical methods, and the stability of the limit cycles is determined by means of Floquet theory.

Here we want to give a new proof. For this we transform (1.1) into a Liénard equation, and we use a result obtained by Zhang Zhifen [5].

2. Two limit cycles

Clearly, the system (1.1) has only a unique equilibrium point $M(\bar{x}, \bar{y})$, where

$$
\begin{aligned}
& \bar{x}=\bar{y} \exp \left(-\frac{\bar{y}}{1+\xi \bar{y}}\right) \\
& \bar{y}=\frac{\mu}{K}
\end{aligned}
$$

Let K_{1}, K_{2} be constant and $K_{1}>\bar{y}, K_{2}>\bar{y}+K_{1} / K$.
Define

$$
\Delta=\left\{(x, y) \mid 0 \leqslant x \leqslant K_{1}, 0 \leqslant \frac{1}{K} x+y \leqslant K_{2}\right\}
$$

It is not difficult to prove the following.

LEMMA 1

The area Δ is a positive invariant set for system (1.1) in \mathbb{R}^{2}.
In order to prove that system (1.1) has at least two limit cycles, let us consider:

PROPOSITION 1

The planar differential system (1.1) can be transformed into the following equation of Liénard type:

$$
\begin{align*}
& \frac{\mathrm{d} x}{\mathrm{~d} \tau}=y-F(x) \\
& \frac{\mathrm{d} y}{\mathrm{~d} \tau}=-q(x) \tag{1.2}
\end{align*}
$$

by a change of variables.

Proof

First, we translate the equilibrium point $M(\bar{x}, \bar{y})$ to the origin by setting

$$
X=x-\bar{x}, \quad Y=y-\bar{y}
$$

System (1.1) transforms into

$$
\begin{align*}
\frac{\mathrm{d} X}{\mathrm{~d} t} & =\mu-K(X+\bar{x}) \exp \left[\frac{Y+\bar{y}}{1+\xi(Y+\bar{y})}\right] \\
\frac{\mathrm{d} Y}{\mathrm{~d} t} & =-(Y+\bar{y})+(X+\bar{x}) \exp \left[\frac{Y+\bar{y}}{1+\bar{\xi}(Y+\bar{y})}\right] \tag{1.3}
\end{align*}
$$

Now let

$$
Z=-(Y+\bar{y})+(X+\bar{x}) \exp \left[\frac{Y+\bar{y}}{1+\xi(Y+\bar{y})}\right]
$$

Then (1.3) becomes

$$
\begin{align*}
& \frac{\mathrm{d} Y}{\mathrm{~d} t}=Z \\
& \frac{\mathrm{~d} Z}{\mathrm{~d} t}=-\Psi_{0}(Y)-\Psi_{1}(Y) Z-\Psi_{2}(Y) Z^{2} \tag{1.4}
\end{align*}
$$

where

$$
\begin{aligned}
& \Psi_{0}(Y)=K Y \exp \left[\frac{Y+\bar{y}}{1+\xi(Y+\bar{y})}\right] \\
& \Psi_{1}(Y)=1-\frac{Y+\bar{y}}{[1+\xi(Y+\bar{y})]^{2}}+K \exp \left[\frac{Y+\bar{y}}{1+\xi(Y+\bar{y})}\right] \\
& \Psi_{2}(Y)=-\frac{1}{[1+\xi(Y+\bar{y})]^{2}}
\end{aligned}
$$

Introducing the new time transformation

$$
\frac{\mathrm{d} t}{\mathrm{~d} \tau}=\phi(Y)=C_{0} \exp \left[\frac{-(Y+\bar{y})}{1+\xi(Y+\bar{y})}\right]
$$

where

$$
C_{0}=\exp \left(\frac{\bar{y}}{1+\xi \bar{y}}\right)
$$

we obtain the Liénard equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} Y}{\mathrm{~d} \tau^{2}}+f(Y) \frac{\mathrm{d} Y}{\mathrm{~d} \tau}+q(Y)=0 \tag{1.5}
\end{equation*}
$$

where

$$
\begin{align*}
f(Y) & =\Psi_{1}(Y) \phi(Y) \\
q(Y) & =\Psi_{2}(Y) \phi^{2}(Y) \tag{1.6}
\end{align*}
$$

or rather the equivalent system (1.2), with

$$
F(x)=\int_{0}^{x} f(\tau) \mathrm{d} \tau
$$

PROPOSITION 2

[1] The Sal'nikov thermokinetic oscillator problem defined in equations (1.1) has no periodic solutions when $\xi>\frac{1}{4}$, for all μ and K.

Proof

The divergence of the vector field defined by (1.2)

$$
\begin{aligned}
\nabla & =\frac{\partial}{\partial x}[y-F(x)]+\frac{\partial}{\partial y}[-q(x)] \\
& =-\left\{\frac{\xi^{2}(x+\bar{y})^{2}+(2 \xi-1)(x+\bar{y})+1}{[1+\xi(x+\bar{x})]^{2}}\right\} \phi(x)
\end{aligned}
$$

is negative, since the discriminant of

$$
p(u)=\xi^{2} u^{2}+(2 \xi-1) u+1
$$

is negative for $\xi>\frac{1}{4}$ and $\phi(x)>0$.
Hence by Bendixson's negative criterion [3] there is no periodic orbit in (1.2) or equivalently (1.1).

Now, as $\xi \leqslant \frac{1}{4}$, there exists two roots for the equation

$$
\xi^{2}(x+\bar{y})^{2}(2 \xi-1)(x+\bar{y})+1=0
$$

Let x_{1}, x_{2} represent the two roots; then we have

$$
x_{1}=\hat{x}_{1}-\bar{y}, \quad x_{2}=\hat{x}_{2}-\bar{y}
$$

where $0<\hat{x}_{1}<\hat{x}_{2}$, and

$$
\hat{x}_{i}=\frac{1-2 \xi \mp \sqrt{1-4 \xi}}{2 \xi^{2}}, \quad i=1,2
$$

Define

$$
\begin{aligned}
& \Omega=\left\{\xi \left\lvert\, 0<\xi \leqslant \frac{1}{4} \quad\right. \text { and } \quad \hat{x}_{1}<\bar{y}<\hat{x}_{2}\right\} \\
& \Pi(x)=\frac{\xi^{2}\left(x-x_{1}\right)\left(x-x_{2}\right)}{[1+\xi(x+\bar{y})]^{2}} \exp \left[\frac{-(x+\bar{y})}{1+\xi(x+\bar{y})}\right]
\end{aligned}
$$

Obviously, $\Pi(x)>0$ as $x \in\left(-\infty, x_{1}\right) \cup\left(x_{2},+\infty\right)$, and $\Pi(x)<0$ as $x \in\left(x_{1}, x_{2}\right)$.
By (1.2), (1.4) and (1.6), we have

$$
\begin{equation*}
F(x)=\int_{0}^{x} f(x) \mathrm{d} x=\int_{0}^{x} C_{0}[\Pi(x)+K] \mathrm{d} x \tag{1.7}
\end{equation*}
$$

LEMMA 2

[5] Consider the system (1.2), and let hypotheses
A1. $q, f \in C^{0}(|x|<+\infty)$,
A2. $x q(x)>0, x \neq 0$,
hold. Then the positive half trajectory and negative half trajectory passing the point $A(x, F(x))(x \neq 0)$ must intersect the y-axis or tend toward the origin for system (1.2).

LEMMA 3

[5] Consider the system (1.2), and let hypotheses

B1. $f, q \in C^{0}(|x|<+\infty)$,
B2. $x q(x)>0, x \neq 0$,
B3. either

$$
\begin{aligned}
& \varlimsup_{x \rightarrow+\infty} F(x)=+\infty \\
& \lim _{x \rightarrow-\infty} F(x)=-\infty
\end{aligned}
$$

or

$$
\begin{aligned}
& \int_{0}^{ \pm} q(x) \mathrm{d} x=Q(\pm \infty)=+\infty \\
& F(x)>K_{1}, \quad x>0 \\
& F(x)<K_{2}, \quad x<0
\end{aligned}
$$

hold. Then the positive half trajectory passing the point $P\left(0, y_{p}\right)\left(y_{p} \neq 0\right)$ must intersect the curve $y=F(x)$ for system (1.2).

We obtain the following result.

THEOREM 1

Consider the system of equations (1.2). If $\xi \in \Omega, K \geqslant 1$, and there exists a constant $M>\max \left\{\left|x_{1}\right|, x_{2}\right\}, e_{2}<e_{1}$, such that $F(x)>e_{1}$ as $x>M$ and $F(x)<e_{2}$ as $x<-M$, then system (1.2) has at least one stable limit cycle and one unstable limit cycle in the area Δ.

Proof

By (1.7)

$$
f(x)=C_{0}[\pi(x)+K]
$$

Choose $K \geqslant 1$ (i.e. $1 / K \leqslant 1$), then we have

$$
\begin{equation*}
f(x)>0 \tag{1.8}
\end{equation*}
$$

as $x \in\left(x_{1}, x_{2}\right)$.
Define the energy function

$$
\lambda(x, y)=\int_{0}^{x} q(x) \mathrm{d} x+\frac{1}{2} y^{2}
$$

Then, for system (1.2), we have

$$
\begin{align*}
\frac{\mathrm{d} \lambda}{\mathrm{~d} \tau} & =q(x) \dot{x}+y \dot{y}=-q(x) F(x) \\
& =-K C_{0} x \exp \left[-\frac{x+\bar{y}}{1+\xi(x+\bar{y})}\right] \int_{0}^{x} f(x) \mathrm{d} x<0 \tag{1.9}
\end{align*}
$$

Fig. 1. Illustrating the proof of theorem 1.
as $x \in\left(x_{1}, x_{2}\right)$. Hence

$$
\begin{equation*}
\frac{\mathrm{d} \lambda}{\mathrm{~d} \tau}<0, \quad 0<|x| \leqslant 1 \tag{1.10}
\end{equation*}
$$

So, the equilibrium point $\bar{O}(0,0)$ is stable, and the closed curve $L_{1}: \lambda(x, y)$ $=C(0<C \leqslant 1)$ is regarded as an interior boundary curve for system (1.2).

Now we will construct an exterior boundary curve for system (1.2). Define

$$
e=\max _{|x| \leqslant M}|F(X)|, \quad b=\max _{|x| \leqslant M}|q(x)|
$$

As $d \geqslant 1$ (i.e., $1 / d \leqslant 1$), we have for system (1.2)

$$
\frac{\mathrm{d} x}{\mathrm{~d} \tau}=y-F(x)>a=d-e>0
$$

as $|x| \leqslant M, y>d$, and

$$
\begin{equation*}
\left|\frac{\mathrm{d} y}{\mathrm{~d} x}\right|=\left|\frac{-q(x)}{y-F(x)}\right| \leqslant \frac{b}{a} \leqslant 1 \tag{1.11}
\end{equation*}
$$

$(|x| \leqslant M)$.
Choose a point $P_{0}\left(x_{P_{0}}, y_{P_{0}}\right)$ on the line $x=-M$ such that $y_{P_{0}}>2 d$. Then $b / a \leqslant 1$ as $d \geqslant 1$. Thus the positive half trajectory $\Gamma^{+}\left(P_{0}\right)$ passing the point P_{0} must intersect the y-axis at P_{1} and intersect the line $x=M$ at $P_{2}\left(x_{P_{2}}, y_{P_{2}}\right)$. We have along the path $P_{0} P_{1} P_{2}$:

$$
\begin{equation*}
y_{P_{0} P_{1} P_{2}}>d, \quad\left|y_{P_{2}}-y_{P_{0}}\right| \leqslant 1 . \tag{1.12}
\end{equation*}
$$

By lemma 2, $\Gamma^{+}\left(P_{0}\right)$ will intersect the curve $y=F(x)$ at P_{3}. By lemma $3, \Gamma^{+}\left(P_{0}\right)$ will intersect the line $x=M$ at $P_{4}\left(x_{P_{4}}, y_{P_{4}}\right)$ again.

Now we choose a point $S_{1}\left(x_{S_{1}}, y_{S_{1}}\right)$ on the line $x=M$ such that $y_{S_{1}}<\min \left(-2 d, y_{P_{4}}\right)$. Similarly, the positive half trajectory $\Gamma^{+}\left(S_{1}\right)$ passing the point S_{1} will intersect the y-axis at S_{2} and intersect the line $x=-M$ at S_{3}. Along the curve $S_{1} S_{2} S_{3}$, we have

$$
\begin{equation*}
y_{S_{1} S_{2} S_{3}}<-d,\left|y_{S_{3}}-y_{S_{1}}\right| \leqslant 1 \tag{1.13}
\end{equation*}
$$

as $d \geqslant 1$.
On the line $x=-M$, we choose a point $Q_{0}\left(x_{Q_{0}}, y_{Q_{0}}\right)$ such that $Y_{Q_{0}}>Y_{P_{0}}$. Similarly, the negative half trajectory $\Gamma^{-}\left(Q_{0}\right)$ passing the point Q_{0} will intersect the curve $y=F(x)$ at Q_{1} and intersect the line $x=-M$ at Q_{2}, the negative y-axis at Q_{3}, and intersect the line $x=M$ at $Q_{4}\left(x_{Q_{4}}, y_{Q_{4}}\right)$.

If $y_{Q_{4}} \geqslant y_{P_{4}}$, then we define the closed curve

$$
\bar{L}_{2}=\widehat{P_{4} P_{3} P_{0}} \cup \overline{P_{0} Q_{0}} \cup \widetilde{Q_{0} Q_{1} Q_{4}} \cup \overline{Q_{4} P_{4}},
$$

and the exterior boundary curve L_{2} for system (1.2) is made by L_{2}. So a ring domain Ω is made by the curve L_{1} and L_{2} for system (1.2). By the Poincaré-Bendixsons theorem [3], system (1.2) or (1.1) has at least an unstable limit $\bar{\Gamma}$ in $\bar{\Omega}$. By lemma 1, we have $\bar{\Gamma} \subset \Delta$.

We note that, for system (1.2), we have on the line $\overline{P_{0} Q_{0}}$:

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} \tau}=-q(-M)>0 \tag{1.14}
\end{equation*}
$$

and on the line $\overline{Q_{4} P_{4}}$:

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} \tau}=-q(M)<0 \tag{1.15}
\end{equation*}
$$

If $y_{Q_{4}}<y_{P_{4}}$, then we choose a point $R_{0}\left(x_{R_{0}}, y_{R_{0}}\right)$ on the line $x=M$ such that $y_{R_{0}}<\min \left\{Q_{4}, S_{1},-3 d\right\}$.

The negative half trajectory $\Gamma^{-}\left(R_{0}\right)$ passing the point R_{0} will intersect the curve
$y=F(x)$ at R_{1}, and also the line $x=M$ at R_{2}, and the positive y-axis at R_{3}, and also the line $x=-M$ at $R_{4}\left(x_{R_{4}}, y_{R_{4}}\right)$, as $d \geqslant 1$.

If $y_{R_{4}} \leqslant y_{Q_{0}}$, then define the closed curve

$$
\overline{\bar{L}}_{2}=\overparen{R_{0} R_{1} R_{4}} \cup \overline{R_{4} Q_{0}} \cup \widetilde{Q_{0} Q_{1} Q_{4}} \cup \overline{Q_{4} R_{0}}
$$

Paying attention to (1.14) and (1.15), we know that the ring domain $\overline{\bar{\Omega}}$ is made by two closed curves L_{1} and \bar{L}_{2} for system (1.2). By the Poincaré-Bendixsons theorem [3], system (1.2) or (1.1) has at least an unstable limit cycle $\overline{\bar{\Gamma}}$ in $\overline{\bar{\Omega}}$, and $\overline{\bar{\Gamma}} \subset \Delta$ by lemma 1.

If $y_{R_{4}}>y_{Q_{0}}$, then $\Gamma^{-}\left(R_{0}\right)$ will intersect the curve $y=F(x)$ at R_{5}, and also the line $x=-M$ at R_{6}, the negative y-axis at R_{7} and the line $x=M$ at R_{8}.

If $y_{R_{8}} \geqslant y_{S_{1}}$, then $y_{R_{8}}>y_{R_{0}}$. Define

$$
\overline{\bar{L}}_{2}=\widehat{R_{0} R_{3} R_{7} R_{8}} \cup \overline{R_{8} R_{0}}
$$

Similarly, the ring domain is made by L_{1} and $\overline{\bar{L}}_{2}$ for system (1.2).
If $Y_{R_{8}}<Y_{S_{1}}$, then we define the energy function

$$
\bar{\lambda}(x, y)=\frac{1}{2}\left(y-K_{1}\right)^{2}+\int_{0}^{x} q(x) \mathrm{d} x
$$

Along the path $\widehat{R_{0} R_{2} R_{4} R_{6} R_{8}}$ we have

$$
\begin{aligned}
\frac{\mathrm{d} \bar{\lambda}}{\mathrm{~d} y} & =\frac{q(x) \dot{x}+\left(y-K_{1}\right) \dot{y}}{\dot{y}} \\
& =F(x)-K_{1}
\end{aligned}
$$

So,

$$
\begin{align*}
\bar{\lambda}_{R_{6}}-\bar{\lambda}_{R_{4}} & =\int_{y_{R_{4}}}^{y_{R_{6}}}\left[F(x)-K_{1}\right] \mathrm{d} y=\int_{y_{R_{6}}}^{y_{R_{4}}}\left[K_{1}-F(x)\right] \mathrm{d} y \\
& >\left(K_{1}-K_{2}\right)\left(y_{R_{4}}-y_{R_{6}}\right)>0 \tag{1.16}\\
\bar{\lambda}_{R_{2}}-\bar{\lambda}_{R_{0}} & =\int_{y_{R_{0}}}^{y_{R_{2}}}\left[F(x)-K_{1}\right] \mathrm{d} x>0 \\
\frac{\mathrm{~d} \bar{\lambda}}{\mathrm{~d} x} & =\frac{q(x)\left[K_{1}-F(x)\right]}{y-F(x)} \tag{1.17}
\end{align*}
$$

We know that as $d \geqslant 1$, we have

$$
\begin{equation*}
\left|\frac{\mathrm{d} \bar{\lambda}}{\mathrm{~d} x}\right| \leqslant 1, \quad|x| \leqslant M \tag{1.18}
\end{equation*}
$$

So, as $d \geqslant 1,|x| \leqslant M$, we obtain

$$
\begin{align*}
& \left|\bar{\lambda}_{R_{8}}-\bar{\lambda}_{R_{6}}\right|=\left|\int_{X_{R_{6}}}^{X_{R_{8}}} \frac{q(x)\left[K_{1}-F(x)\right]}{y-F(x)} \mathrm{d} x\right| \leqslant 1 ; \tag{1.19}\\
& \left|\bar{\lambda}_{R_{4}}-\bar{\lambda}_{R_{2}}\right|=\left|\int_{X_{R_{2}}}^{X_{R_{4}}} \frac{q(x)\left[K_{1}-F(x)\right]}{y-F(x)} \mathrm{d} x\right| \leqslant 1 . \tag{1.20}
\end{align*}
$$

By (1.16)-(1.20), we obtain

$$
\begin{align*}
\bar{\lambda}_{R_{8}}-\bar{\lambda}_{R_{0}} & =\left(\bar{\lambda}_{R_{8}}-\bar{\lambda}_{R_{6}}\right)+\left(\bar{\lambda}_{R_{6}}-\bar{\lambda}_{R_{4}}\right)+\left(\bar{\lambda}_{R_{4}}-\bar{\lambda}_{R_{2}}\right)+\left(\bar{\lambda}_{R_{2}}-\bar{\lambda}_{R_{0}}\right) \\
& >\left(K_{1}-K_{2}\right)\left(y_{R_{4}}-y_{R_{6}}\right)-\left|\bar{\lambda}_{R_{8}}-\bar{\lambda}_{R_{6}}\right|-\left|\bar{\lambda}_{R_{4}}-\bar{\lambda}_{R_{2}}\right| \\
& >\frac{1}{2}\left(K_{1}-K_{2}\right)\left(y_{R_{4}}-y_{R_{6}}\right)>0 . \tag{1.21}
\end{align*}
$$

By (1.21), we have

$$
\begin{equation*}
y_{R_{8}}>y_{R_{0}} \tag{1.22}
\end{equation*}
$$

as $d \geqslant 1$.
Define

$$
L_{2}=\widehat{R_{0} R_{2} R_{4} R_{6} R_{8}} \cup \overline{R_{8} R_{0}}
$$

By considering (1.15), we know that the ring domain Ω_{1} is made by the curve L_{1} and L_{2}. Using the Poincaré-Bendixson theorem [3], system (1.2) or (1.1) has at least an unstable limit cycle Γ_{1} in Ω_{1}. Lemma 1 shows that the limit cycle $\Gamma_{1} \subset \Delta$.

Lastly, the Γ_{1} is regarded as a interior boundary curve and the closed curve $\partial(\Delta)$ (i.e.: the boundary of the area Δ) is regarded as a exterior boundary curve. Then the ring domain Ω_{2} is made by Γ_{1} and $\partial(\Delta)$.

By the Poincaré-Bendixson theorem again, system (1.2) or (1.1) has at least a stable limit cycle Γ_{2} in the area Ω_{2}.

Therefore, system (1.2) or (1.1) has at least two limit cycles in the area Δ and the proof is completed.

Remark 1

Via Hopf bifurcation theory, there are regions of parameter space where the Sal'nikov thermokinetic oscillator (1.1) exhibits one stable limit cycle [2]. In another point of view, the uniqueness of limit cycles of the system (1.1) follows from an application of the Zhang Zhifen theorem [6] to Liénard's system (1.2).

Acknowledgement

The work of the first author (HNM) was partially supported by the CNPq (Brazil).

References

[1] L.K. Forbes, Proc. R. Soc. London A 430 (1990) 641.
[2] B.F. Gray and M.J. Roberts, Proc. R. Soc. London A 416 (1988) 391.
[3] D.W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations, Appl. Math. and Computing Sci. Series (Oxford University Press, Oxford, 1987).
[4] S.R. Kay and S.K. Scott, Proc. R. Soc. London A416 (1988) 343.
[5] Zhang Zhifen, Ding Dong-ren, Huang Wen-Zao and Dong Zhen-xi, Qualitative theory of differential equations, Translations of Mathematical Monographs (Am. Math. Soc., Providence, 1992).
[6] Zhang Zhifen, Applicable Analysis 23 (1986) 63.

