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We show that the Sal 'nikov thermokinetic oscillator system has at least two limit cycles, 
an unstable one lying inside a stable one. The proof uses the elementary technique of Li~nard's 
equation. 

1. I n t r o d u c t i o n  

In this paper we deal with the Sal'nikov thermokinetic oscillator system 

dt - / ~  Kx exp 

dy (1 + - ~ )  (1.1) d--t = - y  + x exp 

and give some sufficient conditions on/z, K, ( under which the system (1.1) has at 
least two limit cycles. This was first proved by Gray and Roberts [2] and Kay and 
Scott [4], then by Forbes [1]. All proofs involve the use of Hopf bifurcation and 
numerical methods, and the stability of the limit cycles is determined by means of 
Floquet theory. 

Here we want to give a new proof. For this we transform (1.1) into a Li6nard 
equation, and we use a result obtained by Zhang Zhifen [5]. 

2. T w o  limit cycles 

Clearly, the system (1.1) has only a unique equilibrium point M(~, 9), where 
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Let Kx,/(2 be constant and K1 >~, K2 >2v + K1/K. 
Define 

A = { (x,y),O<~x<<.Kl, O<~ l x  + y<<.K2 } . 

It is not difficult to prove the following. 

LEMMA 1 
The area/1 is a positive invariant set for system (1.1) in I~ 2. 

In order to prove that system (1.1) has at least two limit cycles, let us consider: 

PROPOSITION 1 
The planar differential system (1.1) can be transformed into the following equa- 

tion of Li6nard type: 

dx 
-~--~T=Y-F(x), 

dy 
- q ( x ) ,  (1.2)  

dr 
by a change of variables. 

Proof 
First, we translate the equilibrium point M(Yc, ~) to the origin by setting 

X = x - 2 ,  Y = y - ~ .  

System (1.1) transforms into 

dX [. Y+~P ] 
dt = # - K ( X + 2 ) e x p  1 +~-(~,Sr~)-j , 

['+'1 d Y _  (Y+2P) + ( X + 2 ) e x p  1 + ( ( Y + ~ )  
dt 

Now let 

Z = - ( Y + ~ )  + ( X +  2)exp 1 + ~ ( Y + ~ ) ]  " 

Then (1.3) becomes 

(1.3) 



1t. N. Moreira, IV. Yuquan / The Sal'nikov equation 65 

dY 
dt = Z ,  
dZ 
dt = - i f  o( Y) - i f  l ( Y ) Z  - ~P2(Y)Z 2 , 

where 

I y + ~  ] 
i f o ( Y ) = K Y e x p  i + ~ ( Y + y )  ' 

Y+~  
ifl(Y) = 1 -  

[1 + ¢( Y + ~p)]2 
1 

if2(Y) = 
[l +~(Y+y)]2" 

Introducing the new time transformation 

f y + ~  ] 
t-Kexp 1 +~-(Y--+ ~)] ' 

dt [ - ( Y + ~ )  ] 
d---~ = ¢(Y) = Co exp 1 + ~(Y + ~)J' 

where 

Co= exp ( 1 - - - ~ ) ,  

we obtain the Li6nard equation 

d 2 
dT 2Y +f(Y)  ~ + q(Y) = 0 

where 

f(Y) = ifl(Y)¢(Y), 
q(Y) = IfE(y)¢E(Y), 

or rather the equivalent system (1.2), with 

fo X F(x)  = f ( r )  d'r. 

(1.4) 

(1.5) 

(1.6) 

PROPOSITION 2 

[1] The Sal'nikov thermokinetic oscillator problem defined in equations (1,1) 
has no periodic solutions when (>  ¼, for all # and K. 

Proof  

The divergence of the vector field defined by (1,2) 
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o + o  
V = ~xx[Y- F(x)] 0y [-q(x)], 

{ ~ 2 ( x + y ) 2 + ( 2 ~ - l ) ( x + ~ P ) +  1} 

is negative, since the discriminant of 

p(u) = ~2,: + (2~ - 1)u + 1 

is negative for ~ > land  ~(x) > 0. 
Hence by Bendixson's negative criterion [3] there is no periodic orbit in (1.2) or 

equivalently (1.1). 
Now, as ~ ~< 1, there exists two roots for the equation 

{2(x +~)2 (2{ -  1)(x+~)  + 1 = 0. 

Let x:, x2 represent the two roots; then we have 

Xl J~ 21 --.P, X2 ~--- 22 - - y ,  

where 0 < 21 < 22, and 

1 - 2 ~  q: , / 1  - 4 {  
5ci = 2~ 2 , i = 1,2. 

Define 

S'2 = {~10<{~< ¼ and )el <.p < 22} , 

1,(x, = , : ( x  x , , (x  x2, r ] 
-(i ; ~ ] 5  exP[1 + {(x + 2P)J" 

Obviously, g(x )  > 0 as x e (-oo, xl) U (x2, +oo), and H(x) < 0 as x e (xl, x2). 
By (1.2), (1.4) and (1.6), we have 

/0>x, j0 x F(x) = dx = Co[H(x) + K] dx. (1.7) 

LEMMA 2 
[5] Consider the system (1.2), and let hypotheses 

ml.  q , f  eC°(lx[< + oo), 
A2. xq(x) > O, x 7~ O, 
hold. Then the positive half trajectory and negative half trajectory passing the 
point A (x, F(x))(x ¢ 0) must intersect the y-axis or tend toward the origin for sys- 
tem (1.2). 

LEMMA 3 
[5] Consider the system (1.2), and let hypotheses 
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B1. f ,  qEC°(Ix[< + ~),  
B2. xq(x) > 0, x ~ 0, 
B3. either 

lim F(x) = +oo, 
x---~ +oo 

lira F ( x ) = - ~ ,  
X---~ - - ~  

o r  

fo q(x) = Q(+oo) = +oo, dx 

F(x)>Kl, x > 0 ,  

F(x)<K2, x < 0 ,  

hold. Then the positive half trajectory passing the point P(0, yp) (yp ~ 0) must inter- 
sect the curvey = F(x) for system (1.2). 

We obtain the following result. 

T H E O R E M  1 

Consider the system of equations (1.2). If ~e S2, K~> 1, and there exists a con- 
stant M >  max{Ixll,X2},e2<el, such that F(x)>el as x > M  and F(x)<e2 as 
x < - M, then system (1.2) has at least one stable limit cycle and one unstable limit 
cycle in the area A. 

Proof 
By(1.7) 

f(x) = Co[rr(x) + K]. 

Choose K f> 1 (i.e. 1/K ~ 1), then we have 

f (x) > 0 

as x e (xl, x2). 
Define the energy function 

a(x,y) = q(x)ax + ½y 2. 

Then, for system (1.2), we have 

dA 
d--r = q(x)Sc + y~9 = -q(x)F(x) 

.l x 

=-KCoxexp[- 1 +~(x-/-.~)J fo f(x) dx<O 

(1.8) 

(1.9) 
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Fig. 1. Illustrating the proof of theorem 1. 

as x e (x1, x2). Hence 

d)~ 
d--~ <0 ,  0 < l x l ~ < l .  (1.10) 

So, the equi l ibr ium poin t  ¢)(0,0) is stable, and the closed curve L l : , ~ ( x , y )  

= C(0 < C ~< 1) is regarded as an interior boundary  curve for system (1.2). 
N o w  we will const ruct  an exterior boundary  curve for system (1.2). 

Define 

e = max  IF(X)I, b = max  Iq(x)l. 
Ixl ~< n Ixl ~< M 

AS d~> 1 (i.e., 1 / d ~  1), we have for system (1.2) 

dx 
= y - F ( x )  > a  = d -  e > 0 ,  
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as Ix[ <~M,y>d,  and 

dy[__ --q(x) < b <~ 1 
(1.11) 

dx[ y -  F(x) a ' 

(Ixl 
Choose a point Po(Xvo,Yeo) on the line x = - M  such that yv0 >2d.  Then b/a<~ 1 

as d i> 1. Thus the positive half trajectory F + (Po) passing the point Po must inter- 
sect the y ~ a t  P1 and intersect the line x = M at P2(xv~,yv2). We have along 
the path PoP1P2: 

yvov~"~2 > d, lYv~ - Y?o ] ~< 1. (1.12) 

By 1emma 2, f'+ (P0) will intersect the curve y = F(x) at P3. By lemma 3, F + (P0) 
will intersect the line x = M at P4 (xv4, Yv4) again. 

Now we choose a point Sl(xs, ,Ys,)  on the line x = M  such that 
Ysl < min( -2d ,  Yv4 ). Similarly, the positive half trajectory f'+ ($I) passing the point 
$1 will intersect the y-axis at $2 and intersect the line x = - M  at $3. Along the 
curve $IS2S3, we have 

Y s ~ 3  < - d, lys3 - ys, I~ < 1, (1.13) 

as d~> 1. 
On the line x = - M ,  we choose a point Qo(XQo,yQo ) such that YQo > Yeo. Simi- 

larly, the negative half trajectory F-(Q0) passing the point Q0 will intersect the 
curve y = F(x) at Q1 and intersect the line x = - M  at Q2, the negative y-axis at Q3, 
and intersect the line x = M at Q4(XQ,, yQ,). 

IfYQ4 >1 YP4, then we define the closed curve 

L2 = P4P3Po u PoQo to QoQIQ4 to Q4P4, 

and the exterior boundary curve L2 for system (1.2) is made by L2. So a ring 
domain g2 is made by the curve L1 and L2 for system (1.2). By the Poincar6-Bendix- 
sons theorem [3], system (1.2) or (1.1) has at least an unstable l imit/~ in ~.  By 
lemma 1, we have/~ c A. 

We note that, for system (1.2), we have on the line PoQo: 

dx 
~-~T= - q ( - M )  > 0 ,  (1.14) 

and on the line QaP4: 

dx 
~-~T= - q ( M )  < 0 .  (1.15) 

IfYQ4 < y~,,, then we choose a point R0 (XRo, y ~ )  on the line x = M such that 

YRo < rain {Q4, S1, -3d} .  

The negative half trajectory F-(Ro) passing the point Ro will intersect the curve 
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y = F(x)  at R1, and also the line x = M at R2, and the positive y-axis at R3, and  

also the line x = - M  at R4 (xm, y ~ ) ,  as d >/1. 

I f y ~  ~< YQo, then define the closed curve 

L2 = RoR1R4 tO RnQo tO QoQ1Q4 to Q4Ro • 

Paying a t tent ion  to (1.14) and (1.15), we know that  the ring domain  J2 is m a d e  by 

two closed curves LI and L2 for system (1.2). By the Poincar6-Bendixsons  theo rem 

[3], system (1.2) or (1.1) has at least an unstable limit cycle F in S2, and  F c A by 

l emma  1. 

I fyR,  >Y00, then F-(Ro) will intersect the curve y = F(x) at R5, and  also the 

line x = - M  at R6, the negative y-axis at R7 and the line x = M at R8. 

IfyR8 >>-YS,, thenyn8 > y ~ .  Define 

L2 = RoR3RvR8 U RsRo. 
= 

Similarly, the ring domain  is made  by L1 and L2 for system (1.2). 

I f  YRs < Ysl, then we define the energy funct ion 

/0 x ~(x,y)  = ½(y-  K1) 2 + q (x )dx .  

Along  the pa th  RooR2R4R6R8 we have 

d_f_ = q(x)Sc + ( y -  K1)p 
dy ~ ' 

= F(x) - K1. 

So, 

f YR6 f yR4 
~e~ - ~ = ._JvR4 [F(x) - K1] de = 

dYg 6 

> (KI - g2) (YR4 - YR6) > 0 ;  

jfv yR2 ~R2 -- ~8o = [F(x) - K1] d x > 0 ;  
Ye.0 

d_f_ = q(x)[K, - F(x)] 

dx y - F(x) 

We know that  as d i> 1, we have 

So, as d/> 1, Ixl M,  we obtain 

[K1 - F(x)] dy 

(1.16) 

(1.17) 

(1.18) 
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IAR, -/~R6I = fxRs q(x)[K1 - F(x)] ] 
ax,, 6 y Z ff-(~ dXl ~<1; (1.19) 

f xR, q(x)__[K1 --F(x)] dx 
 R2I =  x.2 y - F ( x )  ~<1. (1.20) 

By (1.16)-(1.20), we obtain 

,(R, - ,(Ro = (Y,R~ - ~R0) + (~R6 - ,~R,) + (,~R, - ,~R2) + (,~R2 - ,~R0) 

> (gl -- K2)(YR4 --YR6) -- IAR8 - f~R6I- IAR4 -- f~g2l 

2 > l ( g l  - K2) (yp.q -- YR6) >0 .  (1.21) 

By (1.21), we have 

Ygs >YR0 (1.22) 

asd>~l. 

Define 

L2 = 1~R2R4R6R88 U R8Ro. 

By considering (1.15), we know that the ring domain S21 is made by the curve Zl 
and L2. Using the Poincar6-Bendixson theorem [3], system (1.2) or (1.1) has at least 
an unstable limit cycle Fx in f21. Lemma 1 shows that the limit cycle F1 c A. 

Lastly, the F1 is regarded as a interior boundary curve and the closed curve 
a(A) (i.e.: the boundary of the area A) is regarded as a exterior boundary curve. 
Then the ring domain 02 is made by F1 and a(A). 

By the Poincar6-Bendixson theorem again, system (1.2) or (1.1) has at least a 
stable limit cycle F2 in the area f22. 

Therefore, system (1.2) or (1.1) has at least two limit cycles in the area A and 
the proof is completed. 

Remark 1 
Via Hopf  bifurcation theory, there are regions of parameter space where the 

Sal'nikov thermokinetic oscillator (1.1) exhibits one stable limit cycle [2]. In 
another point of view, the uniqueness of limit cycles of the system (1.1) follows 
from an application of the Zhang Zhifen theorem [6] to Li6nard's system (1.2). 
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